A REMARK ON EIGENVALUES OF CERTAIN POSITIVE OPERATORS

BY

I. GLICKSBERG*

ABSTRACT

For a transition operator on $C(X)$ with an invariant measure having global support, the point spectrum of unit modulus and the corresponding eigenfunetions are related to the action of a compact group on a quotient space of X.

The purpose of this paper is to observe that the results of an earlier note [1] apply to the situation considered by Rota [2] or its more general setting due to Schaefer [3]. Rota showed that if T is a non-negative operator of norm ≤ 1 on both L_1 and L_{∞} of a finite measure space, and α is an eigenvalue of unit modulus, $Tf = \alpha f$, $0 \neq f \in L_1$, then α^2 is an eigenvalue (with $T|f|g^2 = \alpha^2 |f|g^2$ where $f = |f| \cdot g$). Using relevant portions of Rota's argument, Schaefer [3] showed that if T is a non-negative operator of spectral radius ≤ 1 on a space E which is either an L_p space of any measure space, $1 \leq p < \infty$, or a $C(X)$, while $T^* \psi \leq \psi$ for some continuous linear functional on E which is strictly positive on the nonnegative cone (less 0), then $Tf = \alpha f$, $|\alpha| = 1$, $0 \neq f \in E$ implies $T|f|g^n$ $=\alpha^{n}|f|g^{n}$ for all *n*.

Our observation borrows a portion of Rota's proof not used by Schaefer as well as part of Schaefer's, and applies in his setting (with our T his operator U [3, p. 58]).

Suppose ¥ is compact Hausdorff and T is a non-negative operator on C(Y) with $T1 = 1$ while(¹) $T^* \mu = \mu$ for some probability measure with (minimal) *support all of Y. Then the closed span A of the eigenfunctions of T with eigenvalues of unit modulus is a self adjoint subalgebra of C(Y), and thus isomorphic*

Received December 26, 1968.

^{*} Work supported in part by the National Science Foundation.

⁽¹⁾ This is no less general than $T^*\mu \leq \mu$ since when $T^1 = 1$, $\|T^*\mu\| = T^*\mu(1) = \mu(1) = \|\mu\|$ and this implies $T^*\mu = \mu$. That T^* has a fixed point in the probability measures is of course no restriction; and if $T^*\mu = \mu$ and F is the support of μ we can always restrict our attention to F: indeed if $h \in C(Y)$, $h = 0$ on F implies $\mu(T(h|)) = 0$ so $|Th| \leq T|h| = 0$, and thus T yields a well defined map T, of $C(F)$ into itself. But of course our conclusions are then only about T_1 and its eigenfunctions. (More generally, F could be the closure of the union of the supports of all fixed μ).

to C(X) for some quotient space X of Y; moreover there is a compact monothetic group K with generator $k_0 \in K$ which acts as a transformation group on X, for *which*

(1)
$$
Th(x) = h(k_0 x), \qquad h \in C(X), \qquad x \in X,
$$

when $T|A$ is viewed as an operator on $C(X)$. Finally identifying the character *group* K^2 *of* K with a subgroup of the circle group, the eigenvalues of unit *modulus of T are just the elements of* $\int_{x \in X} H_2^{\perp}$, where H_x is the isotropy subgroup of x, H_x^{\perp} the orthogonal subgroup.

For Schaefer's operator U, as a functional μ is just a multiple of $h \to \psi(|f|h)$ The fact that A is a subalgebra is simple: we have $Th(y) = \int h dm_y$, $h \in C(Y)$, for some probabability measure m_v , and (Rota) if $Th = \alpha h$, $|\alpha| = 1$, then

(2)
$$
\int \int h dm_y |^2 = |Th(y)|^2 = |h(y)|^2 \le \int |h|^2 dm_y = T |h|^2(y) \, \mathbf{1}
$$

by Schwarz, so $T|h|^2 - |h|^2 \ge 0$ **. But (Schaefer)** $\mu(T|h|^2 - |h|^2) = (T^*\mu - \mu)$ $(|h|^2) = 0$, and since $T|h|^2 - |h|^2 \ge 0$ while $\mu \ge 0$ has global support, $T |h|^2 = |h|^2$. Thus from equality in the Schwarz inequality (2) we have h constant a.e. m_v , with $\alpha h(y)$ the constant since $\int h dm_v = \alpha h(y)$. So if $Tf = \beta f$, β | = 1, then $Tfh(y) = \int fh \, dm_y = \alpha h(y) \int f \, dm_y = \alpha \beta fh(y)$, whence fh is an eigenfunction with eigenvalue of unit modulus, or zero, so A is an algebra. Trivially *A* is self-adjoint since $T\overline{h} = \overline{Th}$.

Now A appears as $C(X)$ as asserted, and since A is invariant under T we can view $T_0 = T | A$ as an operator on $C(X)$. A is spanned by eigenfunctions with eigenvalues of modulus 1, so the action of $\{T_0^n: n \ge 1\}$ on A, or on $C(X)$, is almost periodic. Thus by (a simplification of) the result of [1] (noting that there $C_p = C(X)$, so E is the identity operator) we obtain our transformation group on X with generator k_0 satisfying (1). In fact [1], K is isomorphic to the kernel $\mathscr K$ of the semigroup Σ formed by the strong operator closure of $\{T_0^n : n \geq 1\}$, and thus to Σ itself since $\mathcal{K} = E\Sigma = \Sigma$, E being the identity. Evidently each eigenfunction h of T_0 is a common eigenfunction of the elements of Σ (and conversely), and so of the action of the elements of K :

(3)
$$
h(kx) = \chi(k) h(x), \chi(k) \in \mathbb{C}.(^{2})
$$

 χ is easily seen to be a character of K. Thus each common eigenfunction h of the action of the elements of K lies in $\bigcup_{x \in K} P_x C(X)$, where P_x is the projection on *C(X)* defined by

Vol. 7, 1969

(4)
$$
P_{\chi} h(x) = \int_{K} \chi(k) h(kx) dk
$$

since (3) evidently implies $P_x h = h$. Conversely (4) implies (3), so our set of common eigenfunctions are the non-zero elements of $\bigcup_{x \in K}$ \wedge P , $C(X)$.

To obtain the eigenvalues of unit modulus of T (= those of T_0) we must thus just identify $\{\chi(k_0): \chi \in K^*$, $P_\chi \neq 0\}$. Now each orbit Kx is homeomorphic to K/H_x so each $\chi \in H_x^{\perp}$ defines a continuous unimodular function $kx \to \chi(k)$ on *Kx*; let *h* be any continuous extension to all of *X*. Then P_x *h(x)* = 1, so $P_x \neq 0$. Conversely if P_x $h = h_1 \neq 0$ for some $h \in C(X)$ then if $h_1(x) \neq 0$, $h_1 (kx) =$ $\chi(k) \cdot h_1(x)$ whence $\chi(k) \cdot h_1(x) = h_1(x)$ and $\chi(k) = 1$ if $k \in H_x^{\perp}$ so $\chi \in H_x^2$. Thus our eigenvalues are precisely

(5)
$$
\{\chi(K_0): \chi \in \bigcup_{x \in X} H_x^{\perp}\}.
$$

Modulo the injection of K^{\uparrow} into the circle group dual to the map $n \rightarrow n k_0$ of Z densely into K we can identify (5) with the subset $\bigcup H_{\tt x}^{\perp}$ of K^{\wedge} as asserted, completing our proof.

Note that if X contains two distinct orbits we can produce non-constant fixed points of T: with $h \equiv 1$ on one orbit and 0 on the other and continuous, $0 \neq P_1 h = T P_1 h$. Thus we have precisely one orbit when only the constants are left fixed by T, and then the unimodular eigenvalues form a group (since all H_x 's coincide, K being abelian).

In the preceding no use was made of the invariant measure μ beyond showing A to be an algebra. But in the context of Schaefer's second result $\lceil 3, Th.2 \rceil$ it shows that result as stated holds vacuously if $p < \infty$; more precisely the result should assert that *if* T is a non-negative operator of spectral radius ≤ 1 on l_p , $1 \leq p < \infty$, while $T^*\psi \leq \psi$ for some strictly positive continuous linear functional ψ on l_p then all eigenvalues of T of unit modulus are roots of unity.

Indeed such an eigenvalue of T is an eigenvalue of a corresponding operator U as in [3, p. 58]: if $Tf = \alpha f$, $|\alpha| = 1$, $f \neq 0$, then $T|f| = |f|$, and restricting our attention to the support of f , which we may as well take as the entire set of non-negative integers Z_{+}

$$
Uh=[f]^{-1}T[f|h, h\in l_{\infty},
$$

⁽²⁾ With $S \leftrightarrow k$ for $S \in \mathcal{K}$, $k \in K$ iff $Sh(x) = h(kx)$, $x \in X$, $h \in C(X)$.

defines a non-negative operator with $U1 = 1$; and then $\psi(|f| Uh) - \psi(|f|h)$ $=\psi(T(|f| h)) - \psi(|f| h) \leq 0$ for $0 \leq h \in l_{\infty}$. Since $\psi \in l_p^* = l_q$ is strictly positive $h \to \mu(h) = \psi(|f|h)$, $h \in l_{\infty}$, is given by a non-negative measure with support all of Z_+ . Thus U provides an operator on $C(\beta(Z_+))$ of the type required in our result, but with a purely atomic invariant ⁽³⁾ measure μ . Let ρ map $Y = \beta(Z_+)$ onto its quotient X. Then ρ also carries μ into an invariant measure v which is of course still purely atomic: $v(x) = \sum_{y \in \rho^{-1}(x)} \mu(y)$, and is carried by the countable image of Z_+ . Each such image point x has a finite orbit Kx since $v\{k \cdot x\} = v\{x\}$. Thus $\{U^n \chi_{\rho}^{-1}(x): n \geq 1\} = \{\chi_{\rho-1(k_0^nx}: n \geq 1\}$ is a finite collection; on the other hand Schaefer shows that if α is not a root of unity, for every integer *n* there is a non-void $F_n \subset Z_+$ with $U\chi_{F_{n+1}} = \chi_{F_n}$, $F_n \cap F_m = \emptyset$, $n \neq m$. Since F_n is defined (in Z_+) by an eigenfunction in A, F_n is a union of sets $\rho^{-1}(x)\cap Z_+$, whence $F_n \cap F_{n+m} \neq \emptyset$ for some $m > 0$, a contradiction showing α must be a root of unity.

REFERENCES

1. L Glicksberg, *A remark on almost periodic transition operators,* Israel J. Math. 3 (1965), 71-74.

2. G.-C. Rota, *On the eigenvalues of positive operators,* Bull. Amer. Math. Soc. 67 (1961), 556-558.

3. H. H. Schaefer, *On the point spectrum of positive operators,* Proc. Amer. Math. Soc. 15 (1964), 56-6O.

UNIVERSITY OF WASHINGTON

(3) $U^* \mu \leq \mu$ and thus $U^* \mu = \mu$; cf. footnote (1).